Gartner Blog Network

Motorsports has been doing IoT, Big Data, Real-time Analytics for decades

by Simon Walker  |  January 5, 2017  |  Submit a Comment

In Motorsport real-time data is the only option and race teams have been at the cutting edge of data and analytics technology for decades. As car and driver shoot past the pit wall at speeds in excess of 200 mph streaming data, real-time analysis can be the difference between winning and losing. The volume and velocity of data streaming from car and driver is as impressive as the on track action. A Formula 1 car has over 200 on-board sensors that can generate around 400GB of data throughout a race. This data is not limited to track side analysis, data is also streamed to from any race track in the world to engineers based in the team headquarters with less than 300 milliseconds of latency.

In Addition to real-time data from car and driver, additional data sets are added into the mix such as meteorological data feeds, and live competitor time gaps. The analysis of this high volume and velocity ‘Big Data’ brings challenges. This is why artificial intelligence has a long history in Motorsport for data analysis. For example, Formula 1 engine manufacturer Honda use the cognitive and artificial intelligence capabilities of the IBM Watson IoT platform for real-time engine data analytics. This technology enables predictive analysis that can be presented to engineers to act upon. For example, the track wind speed will have an impact on fuel efficiency. From this track position and competitor time gaps are used to predict the optimum lap for a pit stop.

Pit stops are also data driven. Beyond predicting the optimum lap for a pit stop, pit crew performance is optimized by data analysis. The pit crews performance is measured through the collection of biometric data. Through biometric analysis the Williams Formula 1 Team pit crew performance became world beating and hold the current record for the fastest ever pit stop. At the European Grand Prix in Baku Azerbaijan 2016, the pit crew replaced all four wheels on the race car just 1.92 seconds.

In the second part of this post I will look at what organizations can learn from Motorsport, and how this can be applied to data and analytics strategies that support digital transformation. Part 2.


Simon Walker
Principal Research Analyst
1 years at Gartner
22 years IT Industry

A Principal Research Analyst on the IT Leaders' team, Simon Walker covers master data management (MDM), with a focus on product and multidomain data. Mr. Walker provides expertise and advice to Gartner clients in these areas, with an emphasis on information strategy, the importance of MDM and data governance within data management, business value of MDM and how to operationalize MDM in support of business objectives. Read Full Bio

Leave a Reply

Your email address will not be published. Required fields are marked *

Comments or opinions expressed on this blog are those of the individual contributors only, and do not necessarily represent the views of Gartner, Inc. or its management. Readers may copy and redistribute blog postings on other blogs, or otherwise for private, non-commercial or journalistic purposes, with attribution to Gartner. This content may not be used for any other purposes in any other formats or media. The content on this blog is provided on an "as-is" basis. Gartner shall not be liable for any damages whatsoever arising out of the content or use of this blog.