Blog post

Digital Doppelgänger

By Rick Franzosa | October 27, 2016 | 0 Comments

PLMMOMMESIoTInternet of ThingsIndustrial Internet of ThingsIIoTERPDigital Manufacturing

There may be no concept in digital business more compelling than the digital twin.  I remember an early instantiation, back in the late 1990s, where an aerospace and defense firm had a titanium compressor case that had been severely gouged during the machining process.  The cost of scrapping this nearly finished part would have been huge, but the part was clearly out of specification.   The engineers needed to make a judgment call on keeping/scrapping this part.  They decided to create what we would now call a digital twin.  They placed this compressor case on a coordinate measuring machine (CMM) and used the CMM to digitize the case, complete with the gouge.  After manual processing  this set of data points in the CAD system (remember, this was the 1990’s), the engineers were able to take this exact digital model of the damaged part and run a battery of stress and thermal analysis tests, simulating actual flight use cases.  This battery of tests determined that the damaged part was not significantly weakened, and could be used as-is.

Gartner Hype Cycles define the digital twin as follows:

A digital twin is a dynamic software model of a physical thing or system that relies on sensor data to understand its state, respond to changes, improve operations and add value. Digital twins include a combination of metadata (e.g., classification, composition and structure), condition or state (e.g., location and temperature), event data (e.g., time series), and analytics (e.g., algorithms and rules).

The engineering software world was early to adopt the digital twin, both from product and plant simulation perspective.  With the advent of IIoT, big data, predictive analytics, the content and the power of the digital twin has become immense.


The vendor community is all in on this, from ERP to PLM to automation (OT) vendors, they are feverishly working on platforms to support the orchestration / integration of their developed (and acquired) software assets to support the digital twin.

Here’s the rub.

  • Each of these vendors have their own interpretation of what the digital twin is, from their perspective, defined, modified and accessed using their software tools, plugged into their platform.
  • Enterprise vendors are doubling-down on these technologies, expanding outside of their core domains and adding additional functionality.  Example, Dassault Systemes acquired the Apriso MES system in 2013 to extend their PLM capability and have since acquired Quintiq (supply chain planning) and Ortems (scheduling).  There intention is to expand their CAD/PLM tools into a supply chain ‘platform’, and they are not alone.
  • ‘Open architectures’ are not immune to this.  There are strong commercial reasons for vendors to segregate their strongest platform capability for their internal applications, even while supporting openness (we connect to everyone, but our end-to-end capability is best).
  • These platforms will overlap at the edges, as ERP vendors, Supply Chain Management (SCM) vendors, MES vendors all vie for dominance in this space.
  • Each vendor has strengths and weaknesses in functional applications.  One may have the strongest CAD environment, another the best PLM, still another has the best MES system.
  • Industry standards, which typically lag vendor innovation, and are often ‘lowest common denominator’ functionality, will become more difficult to define and maintain as these platforms become more complex.

While some enterprise customers will adopt an end-to-end platform, this will be the exception, not the rule.  Manufacturers rarely have the luxury of single vendor solutions in business, engineering or production.   Even if customers choose a platform,  they may be settling for weaker application functionality in some areas, compared to the current practice of picking and choosing based on individual application functionality.

In the 1980’s-90’s when the big three automobile companies adopted CAD/CAM systems with then-new surface modeling capability, each OEM chose a different vendor.   Tier 1 automotive suppliers were burdened with having to own at least one seat of each of these three environments, in order to share design information with the OEMs in the native CAD formats.

The proliferation of digital twin platforms has the real possibility of re-creating this age old problem, only to a much larger scale, given the more extensive definition of the digital twin.

As predicted in a recent note (“Five Approaches for Integrating IoT Digital Twins”):

  • Through 2023, 75% of digital twins of OEM IoT-connected products will involve at least five different kinds of integration endpoints.
  • Through 2023, 95% of digital twin integration will be based on custom integration development.

The benefits of the digital twin, tightly defined in a particular scope, are undeniable.  The concept of a single digital twin that will magically and seamlessly operate across domains and system boundaries is a great vision, but the benefit of this all encompassing digital twin may not be worth the cost of ownership.


The Gartner Blog Network provides an opportunity for Gartner analysts to test ideas and move research forward. Because the content posted by Gartner analysts on this site does not undergo our standard editorial review, all comments or opinions expressed hereunder are those of the individual contributors and do not represent the views of Gartner, Inc. or its management.

Leave a Comment