Gartner Blog Network


What We’re Reading June 2020

by Jitendra Subramanyam  |  June 11, 2020  |  Submit a Comment

Move over ‘data visualization.’ The era of data simulation is here.

These experiences unfold as stories in their own way, and stories are sticky, memorable, and invoke a sense of empathy with the characters when told well. In these simulations, we get to place ourselves in the role of the protagonist, and our community becomes the cast of characters, often simplified into little animated dots or icons on a screen.

Accessible data viz is better data viz

Inclusive design principles and accessibility (often posted about with the tag #a11y) are important to take into consideration when designing data visualization because they help a broader audience understand your graphic. Designing with accessibility in mind can even help make your visualizations easier to understand for people without disabilities.

A Dramatic Tour through Python’s Data Visualization Landscape

The conceit of this post will be: “You need to do Thing X. How would you do Thing X in matplotlib? pandas? Seaborn? ggplot? Altair?”  By doing many different Thing X’s, we’ll develop a reasonable list of pros, cons, and takeaways — or at least a whole bunch of code that might be somehow useful.

Machine Learning Works–It Just Doesn’t Look Like Cyborgs

These aren’t examples of artificial general intelligence, but they are the flagship products of the most valuable companies in the world, and they all rely on state-of-the-art machine learning. We are a ways away from Westworld-esque artificial intelligence, but a world in which machine learning dominates software is not science fiction—it’s the nature of our reality.

 

Additional Resources

View Free, Relevant Gartner Research

Gartner's research helps you cut through the complexity and deliver the knowledge you need to make the right decisions quickly, and with confidence.

Read Free Gartner Research

Category: 

Jitendra Subramanyam
VP, Team Manager I
2 years at Gartner
16 years IT Industry

Jitendra Subramanyam leads a research team that is focused on how Chief Data Officers manage the Data and Analytics function in their organizations. Jitendra teaches a course on machine learning at Harvard Extension School. The course is a practical introduction meant to help business executives understand key concepts and techniques in data science and immediately apply them to business problems.Read Full Bio




Leave a Reply

Your email address will not be published. Required fields are marked *

Comments or opinions expressed on this blog are those of the individual contributors only, and do not necessarily represent the views of Gartner, Inc. or its management. Readers may copy and redistribute blog postings on other blogs, or otherwise for private, non-commercial or journalistic purposes, with attribution to Gartner. This content may not be used for any other purposes in any other formats or media. The content on this blog is provided on an "as-is" basis. Gartner shall not be liable for any damages whatsoever arising out of the content or use of this blog.